Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Funct Integr Genomics ; 24(2): 54, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38467932

RESUMEN

Despite substantial progress in clinical trials of osteoarthritis (OA) gene therapy, the prevalence of OA is still on the rise. MiRNAs have a potential biomarker and therapeutic target for OA. OA cartilage and chondrosarcoma cells were studied to determine the role of miR-29a-3p and PTEN. OA cartilage and human chondrosarcoma cells (SW1353) were obtained. miR-29a-3p and PTEN signature expression was determined by RT-qPCR. The binding relationship between miR-29a-3p and PTEN was investigated by dual-luciferase reporter gene and western blot assay. TUNEL, immunohistochemistry, CCK-8, and flow cytometry were utilized to determine the proliferation and apoptosis of SW1353 cells. This study indicated downregulation of miR-29a-3p expression and upregulation of PTEN expression in human OA primary chondrocytes or OA tissue samples, compared with the normal cartilage cells or tissues. PTEN expression was negatively correlated with miR-29a-3p expression, and miR-29a-3p targeted PTEN mechanistically. miR-29a-3p reduced SW1353 cell activity and proliferation and promoted cell apoptosis. However, the aforementioned effects could be reversed by downregulating PTEN. miR-29a-3p can stimulate chondrocyte proliferation and inhibit apoptosis by inhibiting PTEN expression.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , MicroARNs , Osteoartritis , Humanos , Apoptosis/genética , Proliferación Celular/genética , Condrosarcoma/genética , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , Tensinas
2.
Gene ; 908: 148304, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38387708

RESUMEN

Hereditary cancer syndromes result from the presence of inherited pathogenic variants within susceptibility genes. However, the susceptibility genes associated with hereditary cancer syndrome remain predominantly unidentified. Here, we reported a case of hereditary cancer syndrome observed in a Chinese family harboring a germline mutation in Tensin1 (TNS1). We described a 59-year-old female patient presented with Multiple myeloma and Thyroid carcinoma. The proband and her family members exhibited suspected tumor syndrome due to occurrences of other cancer cases. After oncogenetic counseling, whole-exome sequencing and Sanger sequencing were conducted and a primary driver mutation of TNS1 (NM_022648.7:c.2999-1G > C) was detected. Gene Expression Profiling Interactive Analysis revealed that TNS1 was expressed lower in different tumors when compared to normal, including Pancreatic adenocarcinoma, Breast invasive carcinoma, Thyroid carcinoma andColon adenocarcinoma cells. Despite the well-established role of TNS1 as a tumor suppressor in breast cancer and colorectal cancer, its potential utility as a marker gene for diagnosis and treatment of pancreatic cancer remains uncertain. Here, our data demonstrated that knockdown of TNS1 could promote cell proliferation and migration in Pancreatic adenocarcinoma (PDAC) cells. In addition, TNS1 regulated migration through EMT signaling pathway in PDAC cells. Our findings proposed that this variant was likely involved in cancer predisposition by disrupting the normal splicing process. In summary, we presented a genetic disease by linking an intronic mutation inTNS1. We aim to provide early detection of cancers by identifying germline variants in susceptibility genes.


Asunto(s)
Adenocarcinoma , Síndromes Neoplásicos Hereditarios , Neoplasias Pancreáticas , Humanos , Femenino , Persona de Mediana Edad , Mutación de Línea Germinal , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Predisposición Genética a la Enfermedad , Síndromes Neoplásicos Hereditarios/genética , Células Germinativas , Tensinas/genética
3.
Molecules ; 29(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338464

RESUMEN

Human malignant melanoma and other solid cancers are largely driven by the inactivation of tumor suppressor genes and angiogenesis. Conventional treatments for cancer (surgery, radiation therapy, and chemotherapy) are employed as first-line treatments for solid cancers but are often ineffective as monotherapies due to resistance and toxicity. Thus, targeted therapies, such as bevacizumab, which targets vascular endothelial growth factor, have been approved by the US Food and Drug Administration (FDA) as angiogenesis inhibitors. The downregulation of the tumor suppressor, phosphatase tensin homolog (PTEN), occurs in 30-40% of human malignant melanomas, thereby elucidating the importance of the upregulation of PTEN activity. Phosphatase tensin homolog (PTEN) is modulated at the transcriptional, translational, and post-translational levels and regulates key signaling pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways, which also drive angiogenesis. This review discusses the inhibition of angiogenesis through the upregulation of PTEN and the inhibition of hypoxia-inducible factor 1 alpha (HIF-1-α) in human malignant melanoma, as no targeted therapies have been approved by the FDA for the inhibition of angiogenesis in human malignant melanoma. The emergence of nanocarrier formulations to enhance the pharmacokinetic profile of phytochemicals that upregulate PTEN activity and improve the upregulation of PTEN has also been discussed.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Tensinas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Genes Supresores de Tumor
4.
Int J Biol Sci ; 20(1): 231-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164166

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) remains a formidable clinical challenge due to its high recurrence rate and limited targeted therapeutic options. This study aims to elucidate the role of tensin 4 (TNS4) in the pathogenesis of HNSCC across clinical, cellular, and animal levels. We found a significant upregulation of TNS4 expression in HNSCC tissues compared to normal controls. Elevated levels of TNS4 were associated with adverse clinical outcomes, including diminished overall survival. Functional assays revealed that TNS4 knockdown attenuated, and its overexpression augmented, the oncogenic capabilities of HNSCC cells both in vitro and in vivo. Mechanistic studies revealed that TNS4 overexpression promotes the interaction between integrin α5 and integrin ß1, thereby activating focal adhesion kinase (FAK). This TNS4-mediated FAK activation simultaneously enhanced the PI3K/Akt signaling pathway and facilitated the interaction between TGFßRI and TGFßRII, leading to the activation of the TGFß signaling pathway. Both of these activated pathways contributed to HNSCC tumorigenesis. Additionally, we found that hypoxia-inducible factor 1α (HIF-1α) transcriptionally regulated TNS4 expression. In conclusion, our findings provide the basis for innovative TNS4-targeted therapeutic strategies, which could potentially improve prognosis and survival rates for patients with HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Integrina alfa5beta1 , Factor de Crecimiento Transformador beta , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Transformación Celular Neoplásica , Hipoxia , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Tensinas/metabolismo
5.
Biomolecules ; 14(1)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38254705

RESUMEN

The low bioavailability of most phytochemicals limits their anticancer effects in humans. The present study was designed to test whether combining arctigenin (Arc), a lignan mainly from the seed of Arctium lappa, with green tea (GT) and quercetin (Q) enhances the chemopreventive effect on prostate cancer. We performed in vitro proliferation studies on different cell lines. We observed a strong synergistic anti-proliferative effect of GT+Q+Arc in exposing androgen-sensitive human prostate cancer LNCaP cells. The pre-malignant WPE1-NA22 cell line was more sensitive to this combination. No cytotoxicity was observed in normal prostate epithelial PrEC cells. For an in vivo study, 3-week-old, prostate-specific PTEN (phosphatase and tensin homolog) knockout mice were treated with GT+Q, Arc, GT+Q+Arc, or the control daily until 16 weeks of age. In vivo imaging using prostate-specific membrane antigen (PSMA) probes demonstrated that the prostate tumorigenesis was significantly inhibited by 40% (GT+Q), 60% (Arc at 30 mg/kg bw), and 90% (GT+Q+Arc) compared to the control. A pathological examination showed that all control mice developed invasive prostate adenocarcinoma. In contrast, the primary lesion in the GT+Q and Arc alone groups was high-grade prostatic intraepithelial neoplasia (PIN), with low-grade PIN in the GT+Q+Arc group. The combined effect of GT+Q+Arc was associated with an increased inhibition of the androgen receptor, the PI3K/Akt pathway, Ki67 expression, and angiogenesis. This study demonstrates that combining Arc with GT and Q was highly effective in prostate cancer chemoprevention. These results warrant clinical trials to confirm the efficacy of this combination in humans.


Asunto(s)
Furanos , Lignanos , Neoplasias de la Próstata , Animales , Masculino , Ratones , Quimioprevención , Lignanos/farmacología , Lignanos/uso terapéutico , Ratones Noqueados , Fosfatidilinositol 3-Quinasas , Próstata/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/prevención & control , Quercetina/farmacología , Quercetina/uso terapéutico , Tensinas , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo ,
6.
Rev Esp Patol ; 57(1): 3-8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38246708

RESUMEN

INTRODUCTION: Phosphatase and tensin homologue (PTEN) is an important tumour suppressor in multi-step tumorigenesis. To establish the role of PTEN in gastric cancer progression, we examined the PTEN expression degree in gastric cancer tissues. We also explained the connection between PTEN expression and histopathological findings. MATERIALS AND METHODS: Our study was cross-sectional and made up of 50 patients with known gastric cancer. Immunohistochemical staining for PTEN was done on gastric cancer tissues. Tumour behaviour was estimated by histopathological assessments. RESULTS: Twenty-seven (54%) of the 50 patients had PTEN staining. The evaluation of the connection between PTEN expression and demographic data and tumour behaviours revealed no meaningful relationship between PTEN expression and patients' age, gender, tumour site and size, tumour type, tumour grade and stage, neural, and lymphovascular invasion (P-value>0.05). CONCLUSION: PTEN expression level is expected to be a significant molecular event in the progression of gastric cancer and may be a predictive marker for gastric cancer behaviours dependent on society.


Asunto(s)
Neoplasias Gástricas , Humanos , Tensinas , Estudios Transversales , Coloración y Etiquetado , Fosfohidrolasa PTEN
7.
Arterioscler Thromb Vasc Biol ; 44(2): 352-365, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38059351

RESUMEN

BACKGROUND: We recently demonstrated that deletion of thrombomodulin gene from endothelial cells results in upregulation of proinflammatory phenotype. In this study, we investigated the molecular basis for the altered phenotype in thrombomodulin-deficient (TM-/-) cells. METHODS: Different constructs containing deletions or mutations in the cytoplasmic domain of thrombomodulin were prepared and introduced to TM-/- cells. The phenotype of cells expressing different derivatives of thrombomodulin and tissue samples of thrombomodulin-knockout mice were analyzed for expression of distinct regulatory genes in established signaling assays. RESULTS: The phosphatase and tensin homolog were phosphorylated and its recruitment to the plasma membrane was impaired in TM-/- cells, leading to hyperactivation of AKT (protein kinase B) and phosphorylation-dependent nuclear exclusion of the transcription factor, forkhead box O1. The proliferative/migratory properties of TM-/- cells were enhanced, and cells exhibited hypersensitivity to stimulation by angiopoietin 1 and vascular endothelial growth factor. Reexpression of wild-type thrombomodulin in TM-/- cells normalized the cellular phenotype; however, thrombomodulin lacking its cytoplasmic domain failed to restore the normal phenotype in TM-/- cells. Increased basal permeability and loss of VE-cadherin were restored to normal levels by reexpression of wild-type thrombomodulin but not by a thrombomodulin construct lacking its cytoplasmic domain. A thrombomodulin cytoplasmic domain deletion mutant containing 3-membrane-proximal Arg-Lys-Lys residues restored the barrier-permeability function of TM-/- cells. Enhanced phosphatase and tensin homolog phosphorylation and activation of AKT and mTORC1 (mammalian target of rapamycin complex 1) were also observed in the liver of thrombomodulin-KO mice. CONCLUSIONS: These results suggest that the cytoplasmic domain of thrombomodulin interacts with the actin cytoskeleton and plays a crucial role in regulation of phosphatase and tensin homolog/AKT signaling in endothelial cells.


Asunto(s)
Células Endoteliales , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Endoteliales/metabolismo , Trombomodulina/genética , Trombomodulina/metabolismo , Tensinas , Factor A de Crecimiento Endotelial Vascular , Ratones Noqueados , Monoéster Fosfórico Hidrolasas , Mamíferos/metabolismo
8.
Br J Dermatol ; 190(2): 244-257, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37850885

RESUMEN

BACKGROUND: Psoriasis is a common chronic skin disorder. Pathologically, it features abnormal epidermal proliferation, infiltrating inflammatory cells and increased angiogenesis in the dermis. Aberrant expression of E3 ubiquitin ligase and a dysregulated protein ubiquitination system are implicated in the pathogenesis of psoriasis. OBJECTIVES: To examine the potential role of S-phase kinase-associated protein 2 (Skp2), an E3 ligase and oncogene, in psoriasis. METHODS: Gene expression and protein levels were evaluated with quantitative reverse transcriptase polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence staining of skin samples from patients with psoriasis vulgaris and an imiquimod (IMQ)-induced mouse model, as well as from cultured endothelial cells (ECs). Protein interaction, substrate ubiquitination and degradation were examined using co-immunoprecipitation, Western blotting and a cycloheximide chase assay in human umbilical vein ECs. Angiogenesis was measured in vitro using human dermal microvascular ECs (HDMECs) for BrdU incorporation, migration and tube formation. In vivo angiogenesis assays included chick embryonic chorioallantoic membrane, the Matrigel plug assay and quantification of vasculature in the mouse lesions. Skp2 gene global knockout (KO) mice and endothelial-specific conditional KO mice were used. RESULTS: Skp2 was increased in skin samples from patients with psoriasis and IMQ-induced mouse lesions. Immunofluorescent double staining indicated a close association of Skp2 expression with excessive vascularity in the lesional dermal papillae. In HDMECs, Skp2 overexpression was enhanced, whereas Skp2 knockdown inhibited EC proliferation, migration and tube-like structure formation. Mechanistically, phosphatase and tensin homologue (PTEN), which suppresses the phosphoinositide 3-kinase/Akt pathway, was identified to be a novel substrate for Skp2-mediated ubiquitination. A selective inhibitor of Skp2 (C1) or Skp2 small interfering RNA significantly reduced vascular endothelial growth factor-triggered PTEN ubiquitination and degradation. In addition, Skp2-mediated ubiquitination depended on the phosphorylation of PTEN by glycogen synthase kinase 3ß. In the mouse model, Skp2 gene deficiency alleviated IMQ-induced psoriasis. Importantly, tamoxifen-induced endothelial-specific Skp2 KO mice developed significantly ameliorated psoriasis with diminished angiogenesis of papillae. Furthermore, topical use of the Skp2 inhibitor C1 effectively prevented the experimental psoriasis. CONCLUSIONS: The Skp2/PTEN axis may play an important role in psoriasis-associated angiogenesis. Thus, targeting Skp2-driven angiogenesis may be a potential approach to treating psoriasis.


Asunto(s)
Psoriasis , Proteínas Quinasas Asociadas a Fase-S , Humanos , Animales , Ratones , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Tensinas/metabolismo , Células Endoteliales/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Angiogénesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Psoriasis/patología , Ubiquitina-Proteína Ligasas/metabolismo
9.
Neurol Res ; 46(2): 99-110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37706249

RESUMEN

OBJECTIVE: The present study aimed at evaluating the potential contribution of Phosphatase and Tensin Homolog (PTEN) and its gene polymorphism (PTEN rs701848 T/C) in relation to Wingless/integrase-1 (Wnt) signaling in childhood epilepsy and the impact of antiepileptic medications on their serum levels. METHODS: This study included 100 children with epilepsy (50 pharmacoresistant and 50 pharmacoresponsive) and 50 matched controls. All subjects had their genotypes for the PTEN rs701848T/C polymorphism assessed using TaqManTM assays and real-time PCR. By using the sandwich ELISA technique, the blood concentrations of PTEN and Wnt3a were measured. RESULTS: Serum Wnt3a levels in epileptic patients were significantly higher than in the control group, p < 0.001. Children with epilepsy who received oxcarbazepine had considerably lower serum Wnt3a levels than those who didn't, p < 0.001.With an AUC of 0.71, the cutoff value for diagnosing epilepsy as serum Wnt3a > 6.2 ng/mL has a sensitivity of 55% and a specificity of 80%. When compared to controls, epileptic children had considerably more (TT) genotype and less (TC and CC) genotypes, p < 0.05 for all. Epileptic children had significantly higher (T) allele frequency than controls, p = 0.006 with OR (95%CI) = 1.962(1.206-3.192). Pharmacoresistant epileptic children had significantly higher (TT) genotype compared to pharmacoresponsive type (p = 0.020). CONCLUSION: We originally found a strong association between PTEN rs701848 T/C and childhood epilepsy, in particular pharmacoresistant type. Serum Wnt3a levels increased in epilepsy, but were not significantly different between different alleles of PTEN. In pharmaco-responsive children Wnt3a levels differed significantly between the different PTEN genotypes. Antiepileptics may affect Wnt3a levels.


Asunto(s)
Epilepsia , Vía de Señalización Wnt , Niño , Humanos , Tensinas/genética , Vía de Señalización Wnt/genética , Pruebas de Farmacogenómica , Polimorfismo de Nucleótido Simple/genética , Genotipo , Fosfohidrolasa PTEN/genética , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Estudios de Casos y Controles
10.
Proc Natl Acad Sci U S A ; 120(52): e2301155120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109544

RESUMEN

The protease MALT1 promotes lymphocyte activation and lymphomagenesis by cleaving a limited set of cellular substrates, most of which control gene expression. Here, we identified the integrin-binding scaffold protein Tensin-3 as a MALT1 substrate in activated human B cells. Activated B cells lacking Tensin-3 showed decreased integrin-dependent adhesion but exhibited comparable NF-κB1 and Jun N-terminal kinase transcriptional responses. Cells expressing a noncleavable form of Tensin-3, on the other hand, showed increased adhesion. To test the role of Tensin-3 cleavage in vivo, mice expressing a noncleavable version of Tensin-3 were generated, which showed a partial reduction in the T cell-dependent B cell response. Interestingly, human diffuse large B cell lymphomas and mantle cell lymphomas with constitutive MALT1 activity showed strong constitutive Tensin-3 cleavage and a decrease in uncleaved Tensin-3 levels. Moreover, silencing of Tensin-3 expression in MALT1-driven lymphoma promoted dissemination of xenografted lymphoma cells to the bone marrow and spleen. Thus, MALT1-dependent Tensin-3 cleavage reveals a unique aspect of the function of MALT1, which negatively regulates integrin-dependent B cell adhesion and facilitates metastatic spread of B cell lymphomas.


Asunto(s)
Caspasas , Linfoma de Células B Grandes Difuso , Ratones , Humanos , Animales , Adulto , Tensinas/genética , Caspasas/metabolismo , FN-kappa B/metabolismo , Adhesión Celular/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Linfoma de Células B Grandes Difuso/genética , Integrinas
11.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37857485

RESUMEN

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Asunto(s)
Corteza Auditiva , Proteínas Proto-Oncogénicas c-akt , Masculino , Ratones , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Corteza Auditiva/metabolismo , Espinas Dendríticas/metabolismo , Tensinas/metabolismo , Memoria a Largo Plazo/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Memoria a Corto Plazo/fisiología , Sirolimus/farmacología , Miedo/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Mamíferos
12.
Turk J Gastroenterol ; 34(11): 1124-1133, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37737217

RESUMEN

BACKGROUND/AIMS: Recent studies that reveal the molecular profiles of colorectal carcinomas have demonstrated tumor heterogeneity. Characterization of colorectal carcinoma-specific genomic alterations is essential for developing more successful and targeted treat- ment protocols. Moreover, it is vital in elucidating the pathogenesis and mechanisms of resistance against treatment and predicting prognosis. MATERIALS AND METHODS: The study included 73 cases diagnosed with colorectal carcinomas and subjected to molecular analysis by the next-generation sequencing. The association between the clinicopathologic parameters and pathogenic mutations detected in 32 genes was evaluated. RESULTS: Pathogenic mutations were determined in a total of 24 genes. The Cell Division Cycle 27 (CDC27), Kirsten rat sarcoma viral proto-oncogene (KRAS), serine/threonine protein kinase B-raf (BRAF), phosphatase and tensin homolog, breast cancer 2 (BRCA2), and phosphotidylinositol-4,5-biphosphate 3-kinase (PIK3CA) mutations were determined at higher rates, with the adenomatous polypo- sis coli mutation determined at a lower rate than in the literature. There were significant positive correlations between CDC27 and phosphatase and tensin homolog (PTEN), PTEN and BRCA2, and PTEN and adenomatous polyposis coli (APC) concomitant muta- tions, whereas negative correlations were present between BRAF and KRAS. Statistically significant relationships were present between KRAS exon 2 and mucinous morphology, PIK3CA and absence of perineural invasion, BRAF and tumor differentiation/localization, MutS homolog 3 (MSH3) and tumor diameter, and BRCA2 and absence of lymph node metastasis. CONCLUSION: It is necessary to have a comprehensive database of genomic alterations of colorectal carcinomas to interpret mutations more accurately clinically. There are no studies on the frequency of mutations in colorectal carcinomas in the Turkish population; thus, follow-up and treatment protocols are organized following the European and American databases and guidelines. A comprehensive study of the colorectal carcinoma patients' mutation profile in the Turkish patient cohort by the next-generation sequencing method will help to provide significant therapeutic, prognostic, and predictive data and design more successful treatment and follow-up strategies.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tensinas/genética , Tensinas/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
13.
Mutagenesis ; 38(6): 295-304, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37712764

RESUMEN

Hepatic leukemia factor (HLF), a transcription factor, is dysregulated in many cancers. This study investigates the function of HLF in prostate cancer (PCa) and its relation to tensin 1 (TNS1). Clinical tissues were collected from 24 PCa patients. Duke University 145 (DU145) and PC3 cells overexpressing HLF were established. HLF signaling was downregulated in PCa tissues compared to adjacent tissues and in DU145 and PC3 cells compared to prostate epithelial cells RWPE-1 or prostate stromal cells (WPMY-1). PCa cell lines with overexpression of HLF had reduced proliferative, migratory, and invasive activity, increased apoptosis, and cell mitosis mostly in the G0/G1 phase. HLF induced the TNS1 transcription to activate the p53 pathway. Depletion of TNS1 reversed the anti-tumor effects of HLF on PCa cells and tumor growth and metastasis in vivo. In summary, our findings suggest that HLF suppressed PCa progression by upregulating TNS1 expression and inducing the p53 pathway activation, which might provide insights into novel strategies for combating PCa.


Asunto(s)
Leucemia , Neoplasias de la Próstata , Humanos , Masculino , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Tensinas/genética , Tensinas/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Antioxid Redox Signal ; 39(13-15): 890-903, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37470216

RESUMEN

Aims: The goal of this study was to determine whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-produced reactive oxygen species (ROS) enhance brain tumor growth of glioblastoma (GBM) under hypoxic conditions and during radiation treatment. Results: Exogenous ROS promoted brain tumor growth in gliomasphere cultures that expressed functional phosphate and tensin homolog (PTEN), but not in tumors that were PTEN deficient. Hypoxia induced the production of endogenous cytoplasmic ROS and tumor cell growth via activation of NOX. NOX activation resulted in oxidation of PTEN and downstream protein kinase B (Akt) activation. Radiation also promoted ROS production via NOX, which, in turn, resulted in cellular protection that could be abrogated by knockdown of the key NOX component, p22. Knockdown of p22 also inhibited tumor growth and enhanced the efficacy of radiation in PTEN-expressing GBM cells. Innovation: While other studies have implicated NOX function in GBM models, this study demonstrates NOX activation and function under physiological hypoxia and following radiation in GBM, two conditions that are seen in patients. NOX plays an important role in a PTEN-expressing GBM model system, but not in PTEN-nonfunctional systems, and provides a potential, patient-specific therapeutic opportunity. Conclusion: This study provides a strong basis for pursuing NOX inhibition in PTEN-expressing GBM cells as a possible adjunct to radiation therapy. Antioxid. Redox Signal. 39, 890-903.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , NADP/metabolismo , Tensinas , Especies Reactivas de Oxígeno/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/patología , Fosfatos , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Hipoxia
15.
Genes (Basel) ; 14(7)2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37510408

RESUMEN

Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, tissue growth induced by oncogenic Ras is restrained by the induction of cellular senescence, and additional mutations are required to induce tumor progression. Therefore, identifying cooperating cancer genes is of paramount importance. Recently, the tensin family of focal adhesion proteins, TNS1-4, have emerged as regulators of carcinogenesis, yet their role in cancer appears somewhat controversial. Around 90% of human cancers are of epithelial origin. We have used the Drosophila wing imaginal disc epithelium as a model system to gain insight into the roles of two orthologs of human TNS2 and 4, blistery (by) and PVRAP, in epithelial cancer progression. We have generated null mutations in PVRAP and found that, as is the case for by and mammalian tensins, PVRAP mutants are viable. We have also found that elimination of either PVRAP or by potentiates RasV12-mediated wing disc hyperplasia. Furthermore, our results have unraveled a mechanism by which tensins may limit Ras oncogenic capacity, the regulation of cell shape and growth. These results demonstrate that Drosophila tensins behave as suppressors of Ras-driven tissue hyperplasia, suggesting that the roles of tensins as modulators of cancer progression might be evolutionarily conserved.


Asunto(s)
Drosophila , Neoplasias , Animales , Humanos , Tensinas/genética , Hiperplasia , Neoplasias/patología , Carcinogénesis/genética , Mamíferos
16.
Oncology ; 101(7): 457-468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37263260

RESUMEN

INTRODUCTION: The altered protein expression of inverted CCAAT box-binding protein of 90 kDa/ubiquitin-like with PHD and RING finger domains 1 (ICBP90/UHRF1) and Np95-like ring finger protein (NIRF)/UHRF2, which belong to the ubiquitin-like with PHD and RING finger domains (UHRF) family, is linked to tumor malignancy and the progression of various cancers. To determine the role of NIRF and ICBP90 in endometrial tumorigenesis, we evaluated ICBP90 and NIRF expression levels in endometrial cancers. Also molecular alterations of phosphatase and tensin homolog (PTEN) expression are the important event for endometrial carcinogenesis; therefore, we investigated the involvement between ICBP90 and PTEN expression. METHODS: We used Western blot for NIRF, ICBP90, and PTEN expression, mutation analysis of NIRF gene, and immunohistochemical staining for the expression of NIRF and ICBP90. For immunohistochemical staining, we examined atypical endometrial hyperplasia, endometrial cancers, and noncancerous samples. RESULTS: Our data showed that the reduced expression of NIRF and overexpression of ICBP90 occurred in atypical endometrial hyperplasia and endometrial cancer compared to the normal endometrium. The decrease in NIRF expression was significantly correlated with histological grade. Expression of ICBP90 was high, especially in the peripheral margin of a cancer nest. Western blot analysis of endometrial cancer cell lines referred an opposite correlation between ICBP90 and PTEN expression. CONCLUSION: Our findings suggested that continually overexpressed ICBP90 may contribute to the inhibition of PTEN expression, which is a frequent and important event in endometrial carcinogenesis. We propose that the reduced NIRF expression and ICBP90 overexpression is an early event in endometrial carcinogenesis; thus ICBP90 may be useful as a therapeutic target in this disease.


Asunto(s)
Hiperplasia Endometrial , Neoplasias Endometriales , Femenino , Humanos , Tensinas , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Fosfohidrolasa PTEN/genética , Carcinogénesis , Ubiquitinas , Ubiquitina-Proteína Ligasas/genética , Proteínas Potenciadoras de Unión a CCAAT/química , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo
17.
J Cell Mol Med ; 27(13): 1763-1774, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37296531

RESUMEN

Tensin 1 was originally described as a focal adhesion adaptor protein, playing a role in extracellular matrix and cytoskeletal interactions. Three other Tensin proteins were subsequently discovered, and the family was grouped as Tensin. It is now recognized that these proteins interact with multiple cell signalling cascades that are implicated in tumorigenesis. To understand the role of Tensin 1-3 in neoplasia, current molecular evidence is categorized by the hallmarks of cancer model. Additionally, clinical data involving Tensin 1-3 are reviewed to investigate the correlation between cellular effects and clinical phenotype. Tensin proteins commonly interact with the tumour suppressor, DLC1. The ability of Tensin to promote tumour progression is directly correlated with DLC1 expression. Members of the Tensin family appear to have tumour subtype-dependent effects on oncogenesis; despite numerous data evidencing a tumour suppressor role for Tensin 2, association of Tensins 1-3 with an oncogenic role notably in colorectal carcinoma and pancreatic ductal adenocarcinoma is of potential clinical relevance. The complex interplay between these focal adhesion adaptor proteins and signalling pathways are discussed to provide an up to date review of their role in cancer biology.


Asunto(s)
Proteínas de Microfilamentos , Transducción de Señal , Humanos , Tensinas/genética , Tensinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto/metabolismo , Transformación Celular Neoplásica , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Supresoras de Tumor/genética
18.
Molecules ; 28(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175233

RESUMEN

Introduction: Berberine is a natural isoquinoline alkaloid with anti-cancer properties. Nevertheless, the underlying mechanism of its action in human colorectal cancer (CRC) has not been thoroughly elucidated. We investigated the anti-cancer effect of berberine on HT-29, SW-480 and HCT-116 human CRC cell lines. Methods: Cell proliferation, migration and invasion were studied by MTT assay, wound healing, transwell chambers and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunostaining were used to evaluate the expression of aquaporins (AQPs) 1, 3 and 5 in colon cancer cell lines before and after treatment with berberine (10, 30 and 100 µM). RT-qPCR and Western blotting were used to further explore the PI3K/AKT signaling pathway and the molecular mechanisms underlying berberine-induced inhibition of cell proliferation. Results: We demonstrated that treatment of these CRC cell lines with berberine inhibited cell proliferation, migration and invasion through induction of apoptosis and necrosis. HT-29, SW-480 and HCT-116 stained positively for AQP 1, 3 and 5, and berberine treatment down-regulated the expression of all three types of AQPs. Berberine also modulated PI3K/AKT pathway activity through up-regulating PTEN and down-regulating PI3K, AKT and p-AKT expression as well as suppressing its downstream targets, mTOR and p-mTOR at the protein level. Discussion/Conclusions: These findings indicate that berberine inhibited growth, migration and invasion of these colon cancer cell lines via down-regulation of AQP 1, 3 and 5 expressions, up-regulating PTEN which inhibited the PI3K/AKT pathway at the gene and protein levels, and that AQP 1, 3 and 5 expression level can be used as prognostic biomarkers for colon cancer metastasis.


Asunto(s)
Berberina , Neoplasias del Colon , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Berberina/farmacología , Tensinas , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Apoptosis , Células HT29 , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral
19.
Mol Oral Microbiol ; 38(4): 309-320, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37216657

RESUMEN

INTRODUCTION: MicroRNAs (miRNAs), a type of non-coding RNA, have been demonstrated to be essential posttranscriptional modulators in oral diseases and inflammatory responses. However, the specific role of miR-27a-5p in periodontitis requires further investigation. In this study, we used both cellular and animal models to determine how miR-27a-5p affects the pathogenesis of periodontitis and its associated biological functions. METHODS: Quantitative real-time polymerase chain reaction and western blotting were used to analyze the expression of cytokines, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and miR-27a-5p transcription. Investigation of alveolar bone resorption and inflammation of the periodontium in ligature-induced periodontitis in mice was performed using micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, and tartrate-resistant acid phosphatase (TRAP) staining. The binding of miR-27a-5p and PTEN was predicted using the TargetScan database and experimentally confirmed using dual luciferase reporter gene assays. RESULTS: The inflamed gingiva showed lower levels of miR-27a-5p. Macrophages from miR-27a-5p-/- mice produced much higher quantities of pro-inflammatory cytokines owing to the stimulation of Porphyromonas gingivalis lipopolysaccharide, and miR-27a-5p-/- mice with ligature-induced periodontitis also exhibited more severe alveolar bone resorption and damage to the periodontium. Target validation assays identified PTEN as a direct target of bona. Blocking PTEN expression partially reduced inflammation, both in vitro and in vivo. CONCLUSIONS: miR-27a-5p alleviated the inflammatory response in periodontitis by targeting PTEN.


Asunto(s)
Resorción Ósea , MicroARNs , Periodontitis , Ratones , Animales , Tensinas/genética , Microtomografía por Rayos X , MicroARNs/genética , MicroARNs/metabolismo , Inflamación , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Citocinas/genética , Periodontitis/genética , Cromosomas/metabolismo , Resorción Ósea/genética
20.
Reprod Biol ; 23(2): 100764, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37084543

RESUMEN

Mounting literatures suggest that follicular fluid-derived exosomes (FF-Evs) influence the progression of progression of polycystic ovary syndrome (PCOS). The present study was designed to dissect the underlying mechanisms by which FF-Evs affect the PCOS. A rat model of PCOS was established using Letrozole induction. After treatment with FF-Evs, rats were examined for alterations in hormones, blood glucose, and lipid levels in serum, oestrus cycle, pathology in the ovaries, and apoptosis of ovarian cells. The functional rescue assays were performed to analyze the impact of long non-coding RNA 00092 (LINC00092) on PCOS rats. The cis-regulatory elements involved in the regulation of phosphatase and tensin homolog (PTEN) expression were analyzed using bioinformatic analysis, followed by verification of the mechanism. FF-Evs treatment ameliorated Letrozole-induced enhancement of weight, insulin resistance, dyslipidemia, and LH/FSH ratio, reduction of luteal cells, granulosa cells, and healthy follicles, prolonged oestrus, oestrous cycle arrest, ovarian tissue fibrosis, and ovarian cell apoptosis in rats, which were counteracted by treatment with shRNA targeting LINC00092. Regarding the mechanism, FF-Evs augmented LINC00092 expression in rats. LINC00092 bound to lysine demethylase 5 A (KDM5A), and KDM5A facilitated the demethylation of H3K4me3 to restrain the transcriptional activity of PTEN. Taken together, FF-Evs delivered LINC00092 repressed the transcriptional activity of PTEN by binding to KDM5A to enhance demethylation of H3K4me3, thereby reducing apoptosis in ovarian cells and alleviating PCOS symptoms.


Asunto(s)
Síndrome del Ovario Poliquístico , ARN Largo no Codificante , Animales , Femenino , Ratas , Líquido Folicular/metabolismo , Letrozol/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Tensinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA